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ABSTRACT: 

Data Augmentation defined as  supplementing a data set with a data set that is created from 

information data set. It is very vast technique to improve the quality of modern image 

classifiers. The main example of data augmentation is image augmentation, whereas image 

augmentation specifies the parameters used for increasing the data sample count and perform 

various image transformations like zoom, shear, rotation, flipping etc. Many tools are used 

for image augmentation, such as imgaug, keras, smart augment, autoaugment etc. Our aim is 

to find the fastest and most flexible method for image augmentation and to add more 

transformation to the images.  
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INTRODUCTION: 

Machine learning or ML is very wide technologies now a days and requires a huge amount of data 

but unfortunately the amount of data is not sufficient to fulfill the need as required.In most settings, 

data is not available in sufficient quantities to avoid the counterfittingof the data set. The process of 

expanding the training sets by applying transformations as well as preserving the integrity of data is 

known as data augmentation. It has become a very powerful solution to the problem of data 

scarcity. Data augmentation focuses on increasing the data by performing many operations on it and 

then trains the resultant data which is known as training data set then the training data set is used 

by many machine learning, deep learning and neural networks for their models. The goal of data 

augmentation is to increase the data and reduce the cost. Similarly, when there is need of increasing 

the multimedia data and mainly the images, then it is known as image augmentation. Artificially 

Expanding the data set containing image as an input is basic working of image augmentation.By 

artificially expanding the data set we are trying to say that we are taking only one or two images as 

our input and then applying transformations on it which eventually results in increased data. This is 

helpful when we are given data set with very few data samples.Augmentation passes the generated 

information to the network and hence reduces the network loss. When dealing with images, it often 

includes the image transformations such as rotation, shearing, flipping, zoom, translation, blurring 

and many more modifications. Image samples generated using image transformations genrally 

results in increase of existing data sample sets by nearly 3x to 4x times. Fig 1.1 and fig 1.2 are 

examples of image augmentation where only a single image is taken as input and then many 

operations are applied on the same image which results in the increased data set. 1.1 Converting a 

set of input images into a new much larger set of slightly altered images. fig 1.2 Strong example 

augmentation of one input image As we are moving towards more technical world image 

augmentation has become need of the hour. But many times image augmentation leads to 

performance variability. For example, when we apply rotation on 6 it becomes 9 but can’t be 

distinguish by MNIST dataset.  

 

ALBUMENTATION: 

A very fast solution for image augmentation is Albumentation. Albumentation is python library 

contain ‘n’ no of transformation techniques. It is also known as easy to wrap library.Color , 

saturation , lightning and their combinations are used in wide range of computer vision task. The 

difference between original image and resultant image can be seen very easily according to the 

parameters taken. A powerful and very simple interface is provided by the albumentation library 
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which is applicable for different tasks like classifications of images, segementing the images , 

detecting the images and many more. 

SMART AUGMENTATION While training the deep neural networks the best strategy for image 

augmentation is chosen by Smart Augmentation. It does so by merging two or more data sets 

together and then perform some operations on it select the best one. Smart augmentation works for 

reducing the network loss by generating the training data set in a network. By using this we are 

allowed to minimize the error for that network. All data sets are tested which results in increased 

accuracy by illustrating the specific measures. Following are some steps followed by smart 

augmentation.  

Step1: Data sets are combined. 

 Step 2: Combined data set gets trained.  

Step3: Network loss is calculated.  

Step4: 1-3 repeated for n no. of combinations. 

 Step 5: combined data set with minimum network loss is selected. 

 AUTO AUGMENT As the name suggests Auto augments works on the principle of finding the best 

strategy for augmentation automatically. It overcomes the traditional manual augmentation. A 

method auto augment is used to select the the strategy. It works on simple theory which divides the 

data set into smaller dataset and then searching for the desired image to augment it. The data set 

used for autoaugment is CIFAR-10. The methodology on which autoaugmentworks is that it divides 

the data set into mini policies and with each mini policies two operations are assigned which 

contains 1. Transformation to be performed, 2. Magnitude.Then search space algorithm is applied 

which searches for the best mini policy depending upon the accuracy it yields.  

IMGAUG Imgaug is strongest library built in python for augmenting the images. It converts a set of 

input images into a new, much larger set of slightly altered images. This python library not only 

augment the images but also support bounding boxes ,heat maps and segmentation maps. Imgaug 

supports a huge number of augmentation technique moreover combining these techniques in any 

order is also possible. Following code demonstrates the usage of imgaug, the output of code is also 

attached. 

Import imageio 

 importimgaug as ia  

from imgaug import augmenters as iaa  

matplotlib inlineimage=imageio.imread("C:\Users\nikita\Desktop\rbl\image1.png”)  

print("Original:") ia.imshow(image) rotate = iaa.Affine(rotate=(-25, 25)) image_aug = 

rotate.augment_image(image) print("Augmented:") ia.imshow(image_aug). 
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METHODOLOGY: 

We are using the GENERATIVE ADVERSIAL NETWORKS, which creates artificial instances of an image. 

This generative model is unsupervised which learns an underlying distribution. The network takes an 

image as an input and converts into multiple number of images. 

MODULES-: The model further consist of two networks, generator and discriminator, the generator 

model generator model takes one image or set of images as an input and then converts it into ‘n’ no. 

of images . Now, the real images and generated images are fed into the discriminator model, which 

then discriminates the real and fake images. 

 

ALGORITHM: 

Load the data from google drive. 

 •Reshape and resize the dataset.  

• Import all the layers like dense, batch normalization , flatten. 

 • Define the constructor and intialize all the values like rows and columns in which resultant images 

must be displayed.  

• Define the generator model and in the generator model add all the desired layers of the model and 

also add the noise to that model ,so that it can create artificial images .  

• Now, define the discriminator model and in that model add all the desired layers so that it can tell 

the difference between artificial and fake images.  

• Now the two models are combined,by defining the training function where we can define the 

training steps and batch size. 

 • Set a for loop from 0 to no. of images in the dataset.  

• Feed the data onto generator model so that it can get trained.  

• Feed the real images onto the discriminator model and also the fake images.  

• Save the images and then display them. 

RESULTS We took the MNIST dataset which contains images of handwritten numbers(0-9),the 

dataset contains total 70,000 images and the dataset is divided as follows-: • Train dataset-: 55,000 • 

Validation dataset -: 5000 • Test dataset -:10,000 Now, the dataset is grouped into the epochs, every 

epoch is trained 10,000 times with the batch size of 256 image in each batch, means at a time 256 

images are getting trained. The total time taken for training is 5days.The images we get after 1332 

iterations is Fig 1.10 augmented after 1332 iterations The images are not clear after 1332 iterations 

as there is noise in the resultant images which will be removed as the number of iteration increases. 

The more the no of iterations, the more clear the results are. Figure 1.11 is the summary of the 
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layers attached with the models we implemented. The summary depicts the name of the model, the 

name of the layer, the output shape and parameters added for the better results. It also tells the 

total parameters, the trainable parameters and non trainable parameters. Figure 1.12 shows the 

various stages when the data is getting trained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure – 1 (If Available)    Figure – 2 (If Available) 

 

CONCLUSION: 

So, far we have seen different methods for image augmentation like imgaug, auto augment and the 

GAN(which we have implemented).The generative adversial network is the most accurate method 

for image augmentation which results into the highest accurate generated images as the number of 

iterations are higher in this network and the time complexity is also lower. The generator model 

creates the batch of the images from the dataset taken and every batch contains 256 images and 

then every batch is augmented. Hence, we can conclude that the more number of iterations we 

apply the more clear images we can get. As we have already seen fig 1.10 the augmented images are 

blur and not so good but as the number of iterations get increased the results become crystal clear 

and network loss decreases.  
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